



# **MLPInit**: Embarrassingly Simple GNN Training Acceleration with MLP Initialization

Xiaotian Han, Tong Zhao, Yozen Liu, Xia Hu, Neil Shah Texas A&M University, Snap Inc., Rice University



#### Graph Context Empower Graph Learning



#### GNN empowers graph learning via message passing.

#### GNNs vs. MLPs





Effectiveness (for graph)

Efficiency

Worse performance

Superior performance

Computationally efficient

Computationally cost

# GNNs are powerful for graph while MLPs are computationally efficient.

#### Begin with an Intriguing Phenomenon

MLP:  $\mathbf{H}^{l} = \sigma(\mathbf{H}^{l-1}\mathbf{W}_{mlp}^{l})$  GNN:  $\mathbf{H}^{l} = \sigma(\mathbf{A}\mathbf{H}^{l-1}\mathbf{W}_{gnn}^{l})$ 

GNN and MLP have the same trainable weight.

- If the dimensions of the hidden layers are the same
- we refer to that MLP as a PeerMLP

## What will happen if we directly adopt the weights of a converged PeerMLP to GNN?

#### Transfer Weights from MLP to GNN



|          | PeerMLP | GCN w/ $w_{\text{peermlp}}$ | Improv.            | GCN   |
|----------|---------|-----------------------------|--------------------|-------|
| Cora     | 58.50   | 77.60                       | $\uparrow 32.64\%$ | 82.60 |
| CiteSeer | 60.50   | 69.70                       | $\uparrow 15.20\%$ | 71.60 |
| PubMed   | 73.60   | 78.10                       | $\uparrow 6.11\%$  | 79.80 |

Weights from a fully-trained PeerMLP make GNN performs very well.

### **Further Investigation**

PeerMLP f<sub>mlp</sub>(**X**; w<sub>mlp</sub>); GNN f<sub>gnn</sub>(**X**, **A**; w<sub>mlp</sub>)
w<sub>mlp</sub> is only trained by PeerMLP



The loss curve decreases while the accuracy curve are increas.

The GNN can be optimized by updating its PeerMLP.

## MLPInit

For a target GNN,

- 1. Construct its PeerMLP
- 2. Train PeerMLP to converge  $\rightarrow w^*_{mlp}$
- 3. Initialize GNN with  $w_{mlp}^*$
- 4. Fine tune the GNN

```
# f_gnn: graph neural network model
# f_mlp: PeerMLP of f_gnn
# Train PeerMLP for N epochs
for X, Y in dataloader_mlp:
   P = f_mlp(X)
   loss = nn.CrossEntropyLoss(P, Y)
   loss.backward()
   optimizer_mlp.step()
# Initialize GNN with MLPInit
torch.save(f_mlp.state_dict(), "w_mlp.pt")
f_gnn.load_state_dict("w_mlp.pt")
# Train GNN for n epochs
for X, A, Y in dataloader_gnn:
   P = f_{gnn}(X, A)
   loss = nn.CrossEntropyLoss(P, Y)
   loss.backward()
   optimizer gnn.step()
```

Why "Embarrassingly Simple"? Construct a PeerMLP and train it.

#### At a Glance: Faster and Better



- 1. MLPInit can accelerate GNN training by providing a better initialization of GNN.
- 2. MLPInit obtain better accuracy, gain performance improvement.

#### How Fast MLPInit Accelerate GNN?

| Methods                             | Flickr                                                                                                                  | Yelp                                                                                                                                                                         | Reddit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reddit2                                                                                                                                                                                                                                                                           | A-products                                                                                                                                                                                                                                                                                                                          | OGB-arXiv                                                                                                                                                                                                                                                                                                                                                                                  | OGB-products                                                                                                                                                                                                                                                                                                                                                                                                                                            | Avg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Random(★)<br>MLPInit (★)<br>Improv. | 45.6<br>39.9<br>1.14×                                                                                                   | 44.7<br>20.3<br>2.20×                                                                                                                                                        | 36.0<br>7.3<br>4.93×                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48.0<br>7.7<br>6.23×                                                                                                                                                                                                                                                              | 48.9<br>40.8<br>1.20×                                                                                                                                                                                                                                                                                                               | 46.7<br>22.7<br>2.06×                                                                                                                                                                                                                                                                                                                                                                      | 43.0<br>2.9<br>14.83×                                                                                                                                                                                                                                                                                                                                                                                                                                   | 44.7<br>20.22<br>2.21×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Random<br>MLPInit<br>Improv.        | 31.0<br>14.1<br>2.20×                                                                                                   | 35.8<br>0.0                                                                                                                                                                  | 40.6<br>21.8<br>1.86×                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28.3<br>6.1<br>4.64×                                                                                                                                                                                                                                                              | 50.0<br>9.1<br>5.49×                                                                                                                                                                                                                                                                                                                | 48.3<br>19.5<br>2.48×                                                                                                                                                                                                                                                                                                                                                                      | 44.9<br>16.9<br>2.66×                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40.51<br>14.58<br>2.77×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Random<br>MLPInit<br>Improv.        | 15.7<br>7.3<br>2.15×                                                                                                    | 40.3<br>18.0<br>2.24×                                                                                                                                                        | 46.2<br>12.8<br>3.61×                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47.0<br>17.0<br>2.76×                                                                                                                                                                                                                                                             | 37.4<br>1.0<br>37.40×                                                                                                                                                                                                                                                                                                               | 42.9<br>10.9<br>3.94×                                                                                                                                                                                                                                                                                                                                                                      | 42.8<br>15.0<br>2.85×                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38.9<br>11.7<br>3.32×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Random<br>MLPInit<br>Improv.        | 46.4<br>30.5<br>1.52×                                                                                                   | 44.5<br>23.3<br>1.91×                                                                                                                                                        | 42.4<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.4<br>0.0                                                                                                                                                                                                                                                                        | 47.7<br>0.0                                                                                                                                                                                                                                                                                                                         | 46.7<br>24.5<br>1.91×                                                                                                                                                                                                                                                                                                                                                                      | 43.8<br>1.3<br>33.69×                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45.35<br>19.9<br>2.27×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                     | Methods<br>Random(*)<br>MLPInit(*)<br>Improv.<br>Random<br>MLPInit<br>Improv.<br>Random<br>MLPInit<br>Improv.<br>Random | MethodsFlickrRandom( $\bigstar$ )45.6MLPInit( $\bigstar$ )39.9Improv.1.14×Random31.0MLPInit14.1Improv.2.20×Random15.7MLPInit7.3Improv.2.15×Random46.4MLPInit30.5Improv.1.52× | Methods       Flickr       Yelp         Random()       45.6       44.7         MLPInit()       39.9       20.3         Improv.       1.14×       2.20×         Random       31.0       35.8         MLPInit       14.1       0.0         Improv.       2.20×          Random       15.7       40.3         MLPInit       7.3       18.0         Improv.       2.15×       2.24×         Random       46.4       44.5         MLPInit       30.5       23.3         Improv.       1.52×       1.91× | MethodsFlickrYelpRedditRandom( $\bigstar$ )45.644.736.0MLPInit( $\bigstar$ )39.920.37.3Improv.1.14×2.20×4.93×Random31.035.840.6MLPInit14.10.021.8Improv.2.20×1.86×Random15.740.346.2MLPInit7.318.012.8Improv.2.15×2.24×3.61×Random46.444.542.4MLPInit30.523.30.0Improv.1.52×1.91× | MethodsFlickrYelpRedditReddit2Random( $\bigstar$ )45.644.736.048.0MLPInit( $\bigstar$ )39.920.37.37.7Improv.1.14×2.20×4.93×6.23×Random31.035.840.628.3MLPInit14.10.021.86.1Improv.2.20×1.86×4.64×Random15.740.346.247.0MLPInit7.318.012.817.0Improv.2.15×2.24×3.61×2.76×Random46.444.542.42.4MLPInit30.523.30.00.0Improv.1.52×1.91× | MethodsFlickrYelpRedditReddit2A-productsRandom( $\bigstar$ )45.644.736.048.048.9MLPInit( $\bigstar$ )39.920.37.37.740.8Improv.1.14×2.20×4.93×6.23×1.20×Random31.035.840.628.350.0MLPInit14.10.021.86.19.1Improv.2.20×1.86×4.64×5.49×Random15.740.346.247.037.4MLPInit7.318.012.817.01.0Improv.2.15×2.24×3.61×2.76×37.40×Random46.444.542.42.447.7MLPInit30.523.30.00.00.0Improv.1.52×1.91× | MethodsFlickrYelpRedditReddit2A-productsOGB-arXivRandom( $\bigstar$ )45.644.736.048.048.946.7MLPInit( $\bigstar$ )39.920.37.37.740.822.7Improv.1.14×2.20×4.93×6.23×1.20×2.06×Random31.035.840.628.350.048.3MLPInit14.10.021.86.19.119.5Improv.2.20×1.86×4.64×5.49×2.48×Random15.740.346.247.037.442.9MLPInit7.318.012.817.01.010.9Improv.2.15×2.24×3.61×2.76×37.40×3.94×Random46.444.542.42.447.746.7MLPInit30.523.30.00.00.024.5Improv.1.52×1.91×1.91× | MethodsFlickrYelpRedditReddit2A-productsOGB-arXivOGB-productsRandom( $\bigstar$ )45.644.736.048.048.946.743.0MLPInit ( $\bigstar$ )39.920.37.37.740.822.72.9Improv.1.14×2.20×4.93×6.23×1.20×2.06×14.83×Random31.035.840.628.350.048.344.9MLPInit14.10.021.86.19.119.516.9Improv.2.20×1.86×4.64×5.49×2.48×2.66×Random15.740.346.247.037.442.942.8MLPInit7.318.012.817.01.010.915.0Improv.2.15×2.24×3.61×2.76×37.40×3.94×2.85×Random46.444.542.42.447.746.743.8MLPInit30.523.30.00.00.024.51.3Improv.1.52×1.91×1.91×33.69× |

## MLPInit can significantly reduce the training time of GNNs.

#### How Well does MLPInit Perform?

|       |                              |                                                                                             |                                                                                                                   |                                                                                                                   |                                                                                                                   | 10                                                                                                                |                                                                                                                  | <u> </u>                                                                                                                        |                                      |
|-------|------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|       | Methods                      | Flickr                                                                                      | Yelp                                                                                                              | Reddit                                                                                                            | Reddit2                                                                                                           | A-products                                                                                                        | OGB-arXiv                                                                                                        | OGB-products                                                                                                                    | Avg.                                 |
| SAGE  | Random<br>MLPInit<br>Improv. | $53.72{\scriptstyle\pm0.16} \\ 53.82{\scriptstyle\pm0.13} \\ \uparrow 0.19\%$               | $\begin{array}{c} 63.03 {\scriptstyle \pm 0.20} \\ 63.93 {\scriptstyle \pm 0.23} \\ \uparrow 1.43\% \end{array}$  | $\begin{array}{c} 96.50 {\scriptstyle \pm 0.03} \\ 96.66 {\scriptstyle \pm 0.04} \\ \uparrow 0.16\% \end{array}$  | $51.76{\scriptstyle\pm2.53} \\ 89.60{\scriptstyle\pm1.60} \\ \uparrow 73.09\%$                                    | $\begin{array}{c} 77.58 {\scriptstyle \pm 0.05} \\ 77.74 {\scriptstyle \pm 0.06} \\ \uparrow 0.21 \% \end{array}$ | $\begin{array}{c} 72.00{\scriptstyle\pm0.16} \\ 72.25{\scriptstyle\pm0.30} \\ \uparrow 0.36\% \end{array}$       | $\begin{array}{c} 80.05 {\scriptstyle \pm 0.35} \\ 80.04 {\scriptstyle \pm 0.62} \\ \scriptstyle \downarrow 0.01\% \end{array}$ | 70.66<br>76.29<br>↑ 7.97%            |
| SAINT | Random<br>MLPInit<br>Improv. | $51.37{\scriptstyle\pm 0.21}\\51.35{\scriptstyle\pm 0.10}\\{\scriptstyle\downarrow 0.05\%}$ | $\begin{array}{c} 29.42{\scriptstyle\pm1.32} \\ 43.10{\scriptstyle\pm1.13} \\ \uparrow 46.47\% \end{array}$       | $\begin{array}{c} 95.58 {\scriptstyle \pm 0.07} \\ 95.64 {\scriptstyle \pm 0.06} \\ \uparrow 0.06\% \end{array}$  | $\begin{array}{c} 36.45 {\scriptstyle \pm 4.09} \\ 41.71 {\scriptstyle \pm 1.25} \\ \uparrow 14.45\% \end{array}$ | $59.31{\scriptstyle\pm 0.12} \\ 68.24{\scriptstyle\pm 0.17} \\ \uparrow 15.06\%$                                  | $\begin{array}{c} 67.95 {\scriptstyle \pm 0.24} \\ 68.80 {\scriptstyle \pm 0.20} \\ \uparrow 1.25\% \end{array}$ | $73.80{\scriptstyle\pm 0.58} \\ 74.02{\scriptstyle\pm 0.19} \\ \uparrow 0.30\%$                                                 | 59.12<br>63.26<br>↑ 7.00%            |
| C-GCN | Random<br>MLPInit<br>Improv. | $\begin{array}{c} 49.95 \pm 0.15 \\ 49.96 \pm 0.20 \\ \uparrow 0.02\% \end{array}$          | $\begin{array}{c} 56.39 {\scriptstyle \pm 0.64} \\ 58.05 {\scriptstyle \pm 0.56} \\ \uparrow 2.94 \% \end{array}$ | $\begin{array}{c} 95.70 {\scriptstyle \pm 0.06} \\ 96.02 {\scriptstyle \pm 0.04} \\ \uparrow 0.33 \% \end{array}$ | $53.79{\scriptstyle\pm2.48} \\ 77.77{\scriptstyle\pm1.93} \\ \uparrow 44.60\%$                                    | $52.74{\scriptstyle\pm0.28}\atop 55.61{\scriptstyle\pm0.17}\\ \uparrow 5.45\%$                                    | $\begin{array}{c} 68.00 {\scriptstyle \pm 0.59} \\ 69.53 {\scriptstyle \pm 0.50} \\ \uparrow 2.26\% \end{array}$ | $78.71{\scriptstyle\pm 0.59} \\78.48{\scriptstyle\pm 0.64} \\\downarrow 0.30\%$                                                 | 65.04<br>69.34<br>↑ 6.61%            |
| GCN   | Random<br>MLPInit<br>Improv. | $50.90{\scriptstyle\pm 0.12} \\ 51.16{\scriptstyle\pm 0.20} \\ \uparrow 0.51\%$             | $\begin{array}{c} 40.08 \pm 0.15 \\ 40.83 \pm 0.27 \\ \uparrow 1.87\% \end{array}$                                | $92.78 {\scriptstyle \pm 0.11} \\ 91.40 {\scriptstyle \pm 0.20} \\ {\scriptstyle \downarrow} 1.49\%$              | $\begin{array}{c} 27.87 \pm 3.45 \\ 80.37 \pm 2.61 \\ \uparrow 188.42\% \end{array}$                              | $\begin{array}{c} 36.35 {\scriptstyle \pm 0.15} \\ 39.70 {\scriptstyle \pm 0.11} \\ \uparrow 9.22\% \end{array}$  | $70.25{\scriptstyle\pm0.22}\atop70.35{\scriptstyle\pm0.34}\\\uparrow0.14\%$                                      | $77.08{\scriptstyle\pm 0.26} \\ 76.85{\scriptstyle\pm 0.34} \\ \downarrow 0.29\%$                                               | $56.47 \\ 64.38 \\ \uparrow 14.00\%$ |

MLPInit improves the prediction performance for node classification.

### How Well does MLPInit Perform?

|         | Methods                                                                                 | AUC                                                                                                                                            | AP                                                                                                                                                | Hits@10                                                                                                                                             | Hits@20                                                                                                                                          | Hits@50                                                                                                                               | Hits@100                                                                                                    |
|---------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| PubMed  | MLP <sub>random</sub><br>GNN <sub>random</sub><br>GNN <sub>mlpinit</sub><br>Improvement | $\begin{array}{c} 94.76 \pm 0.30 \\ 96.66 \pm 0.29 \\ 97.31 \pm 0.19 \\ \uparrow 0.68\% \end{array}$                                           | $\begin{array}{c} 94.28 \pm 0.36 \\ 96.78 \pm 0.31 \\ 97.53 \pm 0.21 \\ \uparrow 0.77\% \end{array}$                                              | $\begin{array}{c} 14.68 {\scriptstyle \pm 2.60} \\ 28.38 {\scriptstyle \pm 6.11} \\ 37.58 {\scriptstyle \pm 7.52} \\ \uparrow 32.43 \% \end{array}$ | $\begin{array}{c} 24.01 \pm 3.04 \\ 42.55 \pm 4.83 \\ 51.83 \pm 7.62 \\ \uparrow 21.80\% \end{array}$                                            | $\begin{array}{c} 40.02 \pm 2.75 \\ 60.62 \pm 4.29 \\ 70.57 \pm 3.12 \\ \uparrow 16.42\% \end{array}$                                 | $54.85{\scriptstyle\pm2.03} \\ 75.14{\scriptstyle\pm3.00} \\ 81.42{\scriptstyle\pm1.52} \\ \uparrow 8.36\%$ |
| DBLP    | MLP <sub>random</sub><br>GNN <sub>random</sub><br>GNN <sub>mlpinit</sub><br>Improvement | $\begin{array}{c} 95.20{\scriptstyle\pm 0.18}\\ 96.29{\scriptstyle\pm 0.20}\\ 96.67{\scriptstyle\pm 0.13}\\ \uparrow 0.39\% \end{array}$       | $\begin{array}{c} 95.53 {\scriptstyle \pm 0.25} \\ 96.64 {\scriptstyle \pm 0.23} \\ 97.09 {\scriptstyle \pm 0.14} \\ \uparrow 0.47\% \end{array}$ | $\begin{array}{c} 28.70 \pm 3.73 \\ 36.55 \pm 4.08 \\ 40.84 \pm 7.34 \\ \uparrow 11.73\% \end{array}$                                               | $\begin{array}{c} 39.22{\scriptstyle\pm4.13} \\ 43.13{\scriptstyle\pm2.85} \\ 53.72{\scriptstyle\pm4.25} \\ \uparrow 24.57\% \end{array}$        | $53.36{\scriptstyle\pm3.81}\\59.98{\scriptstyle\pm2.43}\\67.99{\scriptstyle\pm2.85}\\\uparrow13.34\%$                                 | $\begin{array}{c} 64.83 \pm 1.95 \\ 71.57 \pm 1.00 \\ 77.76 \pm 1.20 \\ \uparrow 8.65\% \end{array}$        |
| A-Photo | MLP <sub>random</sub><br>GNN <sub>random</sub><br>GNN <sub>mlpinit</sub><br>Improvement | $\begin{array}{c} 86.18 \pm 1.41 \\ 92.07 \pm 2.14 \\ 93.99 \pm 0.58 \\ \uparrow 2.08\% \end{array}$                                           | $\begin{array}{c} 85.37 \pm 1.24 \\ 91.52 \pm 2.08 \\ 93.32 \pm 0.60 \\ \uparrow 1.97\% \end{array}$                                              | $\begin{array}{c} 4.36 \pm 1.14 \\ 9.63 \pm 1.58 \\ 9.17 \pm 2.12 \\ \downarrow 4.75\% \end{array}$                                                 | $\begin{array}{c} 6.96 {\scriptstyle \pm 1.28} \\ 12.82 {\scriptstyle \pm 1.72} \\ 13.12 {\scriptstyle \pm 2.11} \\ \uparrow 2.28\% \end{array}$ | $\begin{array}{c} 12.20{\scriptstyle\pm1.24}\\ 20.90{\scriptstyle\pm1.90}\\ 22.93{\scriptstyle\pm2.56}\\ \uparrow 9.73\% \end{array}$ | $\begin{array}{c} 17.91 \pm 1.26 \\ 29.08 \pm 2.53 \\ 32.37 \pm 1.89 \\ \uparrow 11.32\% \end{array}$       |
| Physics | MLP <sub>random</sub><br>GNN <sub>random</sub><br>GNN <sub>mlpinit</sub><br>Improvement | $\begin{array}{c} 96.26 \scriptstyle{\pm 0.11} \\ 95.84 \scriptstyle{\pm 0.13} \\ 96.89 \scriptstyle{\pm 0.07} \\ \uparrow 1.10\% \end{array}$ | $95.63{\scriptstyle\pm 0.15} \\ 95.38{\scriptstyle\pm 0.15} \\ 96.55{\scriptstyle\pm 0.11} \\ \uparrow 1.22\%$                                    | $5.38{\scriptstyle\pm1.32}\\6.62{\scriptstyle\pm1.00}\\8.05{\scriptstyle\pm1.44}\\\uparrow21.63\%$                                                  | $\begin{array}{c} 8.76 \pm 1.37 \\ 10.39 \pm 1.04 \\ 13.06 \pm 1.94 \\ \uparrow 25.76\% \end{array}$                                             | $15.86 \pm 0.81 \\ 18.55 \pm 1.60 \\ 22.38 \pm 1.94 \\ \uparrow 20.63\%$                                                              | $\begin{array}{c} 24.70 \pm 1.11 \\ 26.88 \pm 1.95 \\ 32.31 \pm 1.43 \\ \uparrow 20.20\% \end{array}$       |
|         | Avg.                                                                                    | $\uparrow 1.05\%$                                                                                                                              | $\uparrow 1.10\%$                                                                                                                                 | ↑ 17.81%                                                                                                                                            | ↑ 20.97%                                                                                                                                         | $\uparrow 14.88\%$                                                                                                                    | $\uparrow 10.46\%$                                                                                          |

MLPInit improves the prediction performance for link prediction task.

#### Why Perform Well?

• Loss Landscape:



#### MLPInit helps find better local minima for GNNs.

### Why Perform Well?

Weight distribution



#### MLPInit produces more high-magnitude weights, indicating better optimization of GNN.





#### Thank you!

Xiaotian Han Texas A&M University <u>han@tamu.edu</u> <u>https://ahxt.github.io</u>





MLPInit: Embarrassingly Simple GNN Training Acceleration with MLP Initialization Xiaotian Han, Tong Zhao, Yozen Liu, Xia Hu, Neil Shah Paper: <u>https://openreview.net/forum?id=P8YIphWNEGO</u> Code: <u>https://github.com/snap-research/MLPInit-for-GNNs</u> Slides: <u>https://ahxt.github.io/files/mlpinit\_slides.pdf</u>