\mathcal{G}-Mixup: Graph Data Augmentation for Graph Classification

Xiaotian Han ${ }^{1}$, Zhimeng Jiang ${ }^{1}$, Ninghao Liu ${ }^{2}$, Xia Hu ${ }^{3}$
${ }^{1}$ Texas A\&M University, ${ }^{2}$ University of Georgia, ${ }^{3}$ Rice University

 UNIVERSITY OF GEORGIA

Overview

(1) Background and Motivation
(2) Methodology

- \mathcal{G}-Mixup
- Implementation
(3) Experiments
- Verification Experiments
- Performance Experiments

Overview

(1) Background and Motivation
(2) Methodology

- \mathcal{G}-Mixup
- Implementation
(3) Experiments
- Verification Experiments
- Performance Experiments

Mixup

Mixup is a cross-instance data augmentation method, which linearly interpolates random sample pair to generate more synthetic training data.

$$
\begin{aligned}
& \mathbf{x}_{\text {new }}=\lambda \mathbf{x}_{i}+(1-\lambda) \mathbf{x}_{j}, \\
& \mathbf{y}_{\text {new }}=\lambda \mathbf{y}_{i}+(1-\lambda) \mathbf{y}_{j}
\end{aligned}
$$

where $\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right),\left(\mathbf{x}_{j}, \mathbf{y}_{j}\right)$ are two samples randomly drawn from training data.
Mixup have been empirically and theoretically shown to improve the generalization and robustness of deep neural networks (H. Zhang et al., 2017; L. Zhang et al., 2021).

Can we mix up input graph pair to improve graph neural networks?

Challenges for Graph Mixup

Graph data is different from image data:

Challenges for Graph Mixup

Graph data is different from image data:

(1) Image data is regular (image can be represented as matrix)

(1) Graph data is irregular (the number of nodes)

Challenges for Graph Mixup

Graph data is different from image data:

(1) Image data is regular (image can be represented as matrix)
(2) Image data is well-aligned (pixel to pixel correspondence)

(1) Graph data is irregular (the number of nodes)
(2) Graph data is not well-aligned (nodes not naturally ordered)

Challenges for Graph Mixup

Graph data is different from image data:

(1) Image data is regular (image can be represented as matrix)
(2) Image data is well-aligned (pixel to pixel correspondence)
(3) Image data is grid-like data

(1) Graph data is irregular (the number of nodes)
(2) Graph data is not well-aligned (nodes not naturally ordered)
(3) Graph has divergent topology information

Challenges for Graph Mixup

Graph data is different from image data:

(1) Image data is regular (image can be represented as matrix)
(2) Image data is well-aligned (pixel to pixel correspondence)
(3) Image data is grid-like data

- Image is in Euclidean space

(1) Graph data is irregular (the number of nodes)
(2) Graph data is not well-aligned (nodes not naturally ordered)
(3) Graph has divergent topology information
- Graph is in non-Euclidean space

Graph Generator: Graphon

The real-world graphs can be regarded as generated from generator (i.e., graphon ${ }^{1}$). For example,

The graphons of different graphs are regular, well-aligned, and in Euclidean space.

We propose to mix up graph generator (i.e., graphon) to achieve the input graph mixup.

[^0]
Overview

(1) Background and Motivation

(2) Methodology

- \mathcal{G}-Mixup
- Implementation
(3) Experiments
- Verification Experiments
- Performance Experiments

\mathcal{G}-Mixup

We propose to mixup the generator (i.e., graphon) of graphs, mix up the graphons of different classes, and then generate synthetic graphs.

The formal mathematical expression are as follows:
(1) Graphon Estimation:

$$
\mathcal{G} \rightarrow W_{\mathcal{G}}, \mathcal{H} \rightarrow W_{\mathcal{H}}
$$

(2) Graphon Mixup:

$$
W_{\mathcal{I}}=\lambda W_{\mathcal{G}}+(1-\lambda) W_{\mathcal{H}}
$$

(3) Graph Generation: $\quad\left\{I_{1}, I_{2}, \cdots, I_{m}\right\} \stackrel{\text { i.i.d }}{\sim} \mathbb{G}\left(K, W_{\mathcal{I}}\right)$
(4) Label Mixup: $\quad \mathbf{y}_{\mathcal{I}}=\lambda \mathbf{y}_{\mathcal{G}}+(1-\lambda) \mathbf{y}_{\mathcal{H}}$

Implementation

(1) Graphon Estimation. We use the step function (Lovász, 2012; Xu et al., 2021) to approximate graphons. In general, the step function can be seen as a matrix $\mathbf{W}=\left[w_{k k^{\prime}}\right] \in[0,1]^{K \times K}$, where $\mathbf{W}_{i j}$ is the probability that an edge exists between node i and node j.
(2) Synthetic Graphs Generation. Generates an adjacency matrix $\boldsymbol{A}=\left[a_{i j}\right] \in\{0,1\}^{K \times K}$, whose element values follow the Bernoulli distributions (\cdot) determined by the step function.

Overview

(1) Background and Motivation

(2) Methodology

- \mathcal{G}-Mixup
- Implementation
(3) Experiments
- Verification Experiments
- Performance Experiments

Do different classes of graphs have different graphons?

We visualize the estimated graphons on IMDB-BINARY, REDDIT-BINARY, and IMDB-MULTI.

IMDB-BINARY

REDDIT-BINARY

IMDB-MULTI

We make the following observations:
(1) Real-world graphs of different classes have different graphons.
(2) This observation lays a solid foundation for our proposed method.

What is \mathcal{G}-Mixup doing? A case study

We visualize the generated synthetic graphs on REDDIT-BINARY dataset.

We make the following observations:
(1) The class 0 has one high-degree node while class 1 have two (a)(b).
(2) The generated graphs based on

- $\left(1 * W_{0}+0 * W_{1}\right)$ have one high-degree node (c).
- $\left(0 * W_{0}+1 * W_{1}\right)$ have two high-degree nodes (d).
- $\left(0.5 * W_{0}+0.5 * W_{1}\right)$ have a high-degree node and a dense subgraph (e).
(3) Graphs generated by \mathcal{G}-Mixup are the mixture of original graphs.

Can \mathcal{G}-Mixup improve the performance of GNNs?

We use different GNNs for graph classification and report the performance comparisons of \mathcal{G}-Mixup.

Dataset	IMDB-B	IMDB-M	REDD-B	REDD-M5	REDD-M12
\#graphs	1000	1500	2000	4999	11929
\#classes	2	3	2	5	11
\#avg.nodes	19.77	13.00	429.63	508.52	391.41
\#avg.edges	96.53	65.94	497.75	594.87	456.89
vanilla	72.18	48.79	78.82	45.07	46.90
U w/ Dropedge	72.50	49.08	81.25	51.35	47.08
w/ DropNode	72.00	48.58	79.25	49.35	47.93
w/ Subgraph	68.50	49.58	74.33	48.70	47.49
w/ M-Mixup	72.83	49.50	75.75	49.82	46.92
w/ G-Mixup	$\mathbf{7 2 . 8 7}$	$\mathbf{5 1 . 3 0}$	$\mathbf{8 9 . 8 1}$	$\mathbf{5 1 . 5 1}$	$\mathbf{4 8 . 0 6}$
vanilla	71.55	48.83	92.59	55.19	50.23
ㄴ w/ Dropedge	$\mathbf{7 2 . 2 0}$	48.83	92.00	55.10	49.77
w/ DropNode	72.16	48.33	90.25	53.26	49.95
w/ Subgraph	68.50	47.25	90.33	54.60	49.67
w/ M-Mixup	70.83	49.88	90.75	54.95	49.81
w/ G-Mixup	71.94	$\mathbf{5 0 . 4 6}$	$\mathbf{9 2 . 9 0}$	$\mathbf{5 5 . 4 9}$	$\mathbf{5 0 . 5 0}$

Method	IMDB-B	IMDB-M	REDD-B	REDD-M5k
$\bar{\circ}$ vanilla	72.37	50.57	90.30	45.07
w/ Dropedge	71.75	48.75	88.96	47.43
등 w/ DropNode	69.16	48.50	81.33	46.15
$\stackrel{\circ}{ }$ w/ Subgraph	67.83	50.83	86.08	45.75
w/ M-Mixup	71.83	51.22	87.58	45.60
w/ \mathcal{G}-Mixup	72.80	51.30	90.40	46.48
$\bar{\circ}$ vanilla	71.68	47.75	78.40	31.61
¢ w/ Dropedge	69.16	49.44	76.00	34.46
- w/ DropNode	70.25	46.83	76.68	33.10
w/ Subgraph	69.50	46.00	76.06	31.65
w/ M-Mixup	66.50	45.16	78.37	34.46
w/ \mathcal{G}-Mixup	73.25	50.70	78.87	38.42
$\bar{\circ}$ vanilla	73.25	49.04	84.95	49.32
\bigcirc	69.16	49.66	81.37	47.20
3 w/ DropNode	73.50	49.91	85.68	46.82
. $\sum^{\text {w/ }}$ Subgraph	70.25	48.18	84.91	49.22
\sum w/ M-Mixup	70.62	49.96	85.12	47.20
w/ \mathcal{G}-Mixup	73.93	50.29	85.87	50.12

We make the following observation:

(1) \mathcal{G}-Mixup can improve the performance of GNNs on various datasets.

Can \mathcal{G}-Mixup improve the performance of GNNs?

We present the training/validation/test curves on IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY and REDDIT-MULTI-5K with GCN.

REDDIT-BINARY

REDDIT-MULTI-5K

We make the following observations:
(1) The loss curves of \mathcal{G}-Mixup are lower than the vanilla model.
(2) \mathcal{G}-Mixup can improve the generalization of graph neural networks.

References I

Lovász, L. (2012). Large networks and graph limits (Vol. 60). American Mathematical Soc.
Xu, H., Luo, D., Carin, L., \& Zha, H. (2021). Learning graphons via structured gromov-wasserstein barycenters. Proceedings of the AAAI Conference on Artificial Intelligence, 10505-10513.

Zhang, H., Cisse, M., Dauphin, Y. N., \& Lopez-Paz, D. (2017). Mixup: Beyond empirical risk minimization. International Conference on Learning Representations.

Zhang, L., Deng, Z., Kawaguchi, K., Ghorbani, A., \& Zou, J. (2021). How does mixup help with robustness and generalization? International Conference on Learning Representations.

\mathcal{G}-Mixup: Graph Data Augmentation for Graph Classification

Xiaotian Han ${ }^{1}$, Zhimeng Jiang ${ }^{1}$, Ninghao Liu 2, Xia Hu ${ }^{3}$ ${ }^{1}$ Texas A\&M University, ${ }^{2}$ University of Georgia, ${ }^{3}$ Rice University

Q\&A

[^0]: ${ }^{1}$ For ease of exposition, we use step function as grpahon in the following.

