G-Mixup: Graph Data Augmentation for Graph Classification

Xiaotian Han¹, Zhimeng Jiang¹, Ninghao Liu², Xia Hu³

¹Texas A&M University, ²University of Georgia, ³Rice University

2 Methodology

- *G*-Mixup
- Implementation

- Verification Experiments
- Performance Experiments

2 Methodology

- *G*-Mixup
- Implementation

- Verification Experiments
- Performance Experiments

Mixup is a cross-instance data augmentation method, which linearly interpolates random sample pair to generate more synthetic training data.

$$\mathbf{x}_{new} = \lambda \mathbf{x}_i + (1 - \lambda) \mathbf{x}_j,$$

$$\mathbf{y}_{new} = \lambda \mathbf{y}_i + (1 - \lambda) \mathbf{y}_j,$$

where $(\mathbf{x}_i, \mathbf{y}_i)$, $(\mathbf{x}_j, \mathbf{y}_j)$ are two samples randomly drawn from training data.

Mixup have been empirically and theoretically shown to improve the generalization and robustness of deep neural networks (H. Zhang et al., 2017; L. Zhang et al., 2021).

Can we mix up input graph pair to improve graph neural networks?

Graph data is different from image data:

 $[abed:(1,0)]{}$

 Image data is regular (image can be represented as matrix) Graph data is irregular (the number of nodes)

- Image data is regular (image can be represented as matrix)
- Image data is well-aligned (pixel to pixel correspondence)

- Graph data is irregular (the number of nodes)
- Graph data is not well-aligned (nodes not naturally ordered)

- Image data is regular (image can be represented as matrix)
- Image data is well-aligned (pixel to pixel correspondence)
- Image data is grid-like data

- Graph data is irregular (the number of nodes)
- Graph data is not well-aligned (nodes not naturally ordered)
- Graph has divergent topology information

- Image data is regular (image can be represented as matrix)
- Image data is well-aligned (pixel to pixel correspondence)
- Image data is grid-like data
- Image is in Euclidean space

- Graph data is irregular (the number of nodes)
- Graph data is not well-aligned (nodes not naturally ordered)
- Graph has divergent topology information
- Graph is in non-Euclidean space

The real-world graphs can be regarded as generated from generator (i.e., $graphon^{1}$). For example,

The graphons of different graphs are **regular**, **well-aligned**, and **in Euclidean space**.

We propose to mix up graph generator (i.e., graphon) to achieve the input graph mixup.

¹For ease of exposition, we use step function as grpahon in the following.

2 Methodology

- *G*-Mixup
- Implementation

- Verification Experiments
- Performance Experiments

\mathcal{G} -Mixup

We propose to mixup the generator (i.e., graphon) of graphs, mix up the graphons of different classes, and then generate synthetic graphs.

The formal mathematical expression are as follows:

(1) Graphon Estimation: $\mathcal{G} \to W_{\mathcal{G}}, \mathcal{H} \to W_{\mathcal{H}}$ (2) Graphon Mixup: $W_{\mathcal{I}} = \lambda W_{\mathcal{G}} + (1 - \lambda)W_{\mathcal{H}}$ (3) Graph Generation: $\{I_1, I_2, \cdots, I_m\} \stackrel{\text{i.i.d}}{\sim} \mathbb{G}(K, W_{\mathcal{I}})$ (4) Label Mixup: $\mathbf{y}_{\mathcal{I}} = \lambda \mathbf{y}_{\mathcal{G}} + (1 - \lambda)\mathbf{y}_{\mathcal{H}}$

- Graphon Estimation. We use the step function (Lovász, 2012; Xu et al., 2021) to approximate graphons. In general, the step function can be seen as a matrix W = [w_{kk'}] ∈ [0, 1]^{K×K}, where W_{ij} is the probability that an edge exists between node i and node j.
- ② Synthetic Graphs Generation. Generates an adjacency matrix A = [a_{ij}] ∈ {0,1}^{K×K}, whose element values follow the Bernoulli distributions (·) determined by the step function.

2 Methodology

- *G*-Mixup
- Implementation

- Verification Experiments
- Performance Experiments

We visualize the estimated graphons on IMDB-BINARY, REDDIT-BINARY, and IMDB-MULTI.

We make the following observations:

- Real-world graphs of different classes have different graphons.
- ② This observation lays a solid foundation for our proposed method.

What is \mathcal{G} -Mixup doing? A case study

We visualize the generated synthetic graphs on REDDIT-BINARY dataset.

We make the following observations:

- The class 0 has one high-degree node while class 1 have two (a)(b).
- The generated graphs based on
 - $(1 * W_0 + 0 * W_1)$ have one high-degree node (c).
 - $(0 * W_0 + 1 * W_1)$ have two high-degree nodes (d).
 - $(0.5 * W_0 + 0.5 * W_1)$ have a high-degree node and a dense subgraph (e).
- Graphs generated by G-Mixup are the mixture of original graphs.

We use different GNNs for graph classification and report the performance comparisons of $\mathcal{G}\text{-}\mathsf{Mixup}.$

Mothod

IMDD D. IMDD M. DEDD D. DEDD MEI

								Witchiod	11100-0		NEDD-D	
	Dataset	IMDB-B	IMDB-M	REDD-B	REDD-M5	REDD-M12		§ vanilla	72.37	50.57	90.30	45.07
	#graphs #classes #avg.nodes #avg.edges	1000 2 19.77 96.53	1500 3 13.00 65.94	2000 2 429.63 497.75	4999 5 508.52 594.87	11929 11 391.41 456.89	w/ Dropedge w/ DropNode w/ Subgraph w/ M-Mixup w/ G-Mixup	71.75 69.16 67.83 71.83 72.80	48.75 48.50 50.83 51.22 51.30	88.96 81.33 86.08 87.58 90.40	47.43 46.15 45.75 45.60 46.48	
GCN	vanilla w/ Dropedge w/ DropNode w/ Subgraph w/ M-Mixup w/ <i>G</i> -Mixup	72.18 72.50 72.00 68.50 72.83 72.87	48.79 49.08 48.58 49.58 49.50 51.30	78.82 81.25 79.25 74.33 75.75 89.81	45.07 51.35 49.35 48.70 49.82 51.51	46.90 47.08 47.93 47.49 46.92 48.06		vanilla w/ Dropedge w/ DropNode w/ Subgraph w/ M-Mixup w/ <i>G</i> -Mixup	71.68 69.16 70.25 69.50 66.50 73.25	47.75 49.44 46.83 46.00 45.16 50.70	78.40 76.00 76.68 76.06 78.37 78.87	31.61 34.46 33.10 31.65 34.46 38.42
GIN	vanilla w/ Dropedge w/ DropNode w/ Subgraph w/ M-Mixup w/ <i>G</i> -Mixup	71.55 72.20 72.16 68.50 70.83 71.94	48.83 48.83 48.33 47.25 49.88 50.46	92.59 92.00 90.25 90.33 90.75 92.90	55.19 55.10 53.26 54.60 54.95 55.49	50.23 49.77 49.95 49.67 49.81 50.50	Mincut Dool	vanilla w/ Dropedge w/ DropNode w/ Subgraph w/ M-Mixup w/ <i>G</i> -Mixup	73.25 69.16 73.50 70.25 70.62 73.93	49.04 49.66 49.91 48.18 49.96 50.29	84.95 81.37 85.68 84.91 85.12 85.87	49.32 47.20 46.82 49.22 47.20 50.12

We make the following observation:

Can \mathcal{G} -Mixup improve the performance of GNNs?

We present the training/validation/test curves on IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY and REDDIT-MULTI-5K with GCN.

We make the following observations:

- **(**) The loss curves of \mathcal{G} -Mixup are lower than the vanilla model.
- **2** G-Mixup can improve the generalization of graph neural networks.

References I

- Lovász, L. (2012). Large networks and graph limits (Vol. 60). American Mathematical Soc.
- Xu, H., Luo, D., Carin, L., & Zha, H. (2021). Learning graphons via structured gromov-wasserstein barycenters. Proceedings of the AAAI Conference on Artificial Intelligence, 10505–10513.
- Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2017). Mixup: Beyond empirical risk minimization. International Conference on Learning Representations.
- Zhang, L., Deng, Z., Kawaguchi, K., Ghorbani, A., & Zou, J. (2021). How does mixup help with robustness and generalization? *International Conference on Learning Representations*.

G-Mixup: Graph Data Augmentation for Graph Classification

Xiaotian Han¹, Zhimeng Jiang¹, Ninghao Liu², Xia Hu³ ¹Texas A&M University, ²University of Georgia, ³Rice University

Q&A

